
CS 4530: Fundamentals of Software Engineering

Module 11.2: Case Studies

Jon Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Goals for this Lesson
• By the end of this lesson you should be 
able to:
• Briefly describe several typical examples of 

distributed systems
• Briefly describe how each of them deals with 

scalability, fault tolerance, etc.



Case Study 1: the Network File 
System NFS
• NFS is a distributed file system: multiple clients can 
read/write the same files
• Created in 1984, still widely used
• In a UNIX (POSIX-compliant) operating system, files 
are stored in a tree from “/”
• Access a remote file by name like 

/username@remotehost/path/to/remote/file

• Or you could “mount” a remote filesystem to access it 
as if it were local.



NFS is a Monolithic Shared 
Filesystem
• All files are stored on a single server
• To list files in a directory, clients make request to 
server
• To read or write files, clients make request to server
• Clients might “lock” files to prevent concurrent 
updates
• Assuming that scale, throughput, fault tolerance 
requirements are relatively low, this is an acceptable 
architecture
• This architecture is the easiest to build fast and 
correctly



Case Study 2: GFS (Google File 
System, ~2010)
• Stated requirements: 
• “High sustained bandwidth is more 
important than low latency. Most of our 
target applications place a premium on 
processing data in bulk at a high rate, 
while few have stringent response time 
requirements for an individual read or 
write.”



GFS is a tiered filesystem with two tiers:
Metadata and File Chunks
• Example: GFS (Google File System, c 
2010)

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

GFS 
MetadataGFS Client

Where is file /foo/bar?

List of chunks and their locations

Reads chunks from the specific Chunk Servers 
known to have them

GFS Client
GFS Client

GFS Client
GFS Client

GFS Client
GFS Client

Metadata tier stores where files 
are stored, in 128MB chunks

Chunk tier stores each 128MB chunk, no need for coordination between ChunkServers 
not storing same chunk



Case Study 3: Domain Name System 
(DNS)
• Nodes (hosts) on a network are identified by 
IP addresses
• E.g.: 142.251.41.4
• We humans prefer something easier to 
remember: calendar.google.com, 
facebook.com, 
www.khoury.northeastern.edu
• We need to keep a directory of domain 
names and their addresses
• We also need to make sure everybody gets 
directed to the correct host



Requirements for the DNS system
• Need to handle millions of DNS queries 
per second
• Not immediately obvious how to scale: 
how do we maintain replication, some 
measure of consistency?

8

DNS Server

facebook.com?
31.13.66.35

http://facebook.com/


DNS distributed system requirements
• We need a scalable solution

• New hosts keep being added
• Number of users increases
• Need to maintain speed/responsiveness

• We need our service to be available and fault 
tolerant
• It is a crucial basic service
• A problematic node shouldn’t “crash the internet”
• Reads are more important that writes: far more queries 

to resolve records than to update them
• Global in scope

• Domain names mean the same thing everywhere

9



Strawman solution A: monolithic 
architecture
• Route all requests to a server 
with a well-known address.
• All requests made to this 
server:
• Single point of failure
• Bottleneck for throughput and 

access time (billions of queries 
per day; access time in msecs)

• Bottleneck for administration 
(adding/changing records?)

• Ultimately, not scalable!

10

https://a.root-servers.org/metrics



Strawman solution B: Use a local file
• Keep local copy of mapping from all 
hosts to all IPs (e.g., /etc/hosts)
• Space would be reasonable: a few dozen 
Gbytes.
• BUT hosts change IPs regularly, so need 
to download file frequently
• Lot of constant internet bandwidth use
• Still not scalable!

11



A tiered architecture yields a scalable 
solution
• Idea: break apart responsibility for each 
part of a domain name (zone) to a 
different group of servers
• Each zone is a continuous section of the 
name space, eg *.northeastern.edu
• Each zone has an associated set of name 
servers.



DNS partitions responsibility by “layers”. 

13

org comedu govnet

northeastern

www

www

uk

root-servers

www

Global
Layer

Administrational

Layer

Managerial
Layer

Root Servers

khoury



14

Tree search 
in DNS

*.khoury.northeastern.edu.

*.edu

*.northeastern.edu

*.registrar.northeastern.edu.

*.law.northeastern.edu.

etc.



15

Updating 
name servers

*.khoury.northeastern.edu.

*.edu

*.northeastern.edu

*.registrar.northeastern.edu.

course.khoury.northeastern.edu.



This is an example of a tiered 
architecture
• Each server need only needs to know 
about its immediate descendants in its 
zone.
• It only processes requests about a single 
zone.
• Both data and processing are limited to 
requests about this zone– any other 
requests are delegated to this server’s 
parent server.

16



But some zones are too big and too 
busy to be handled by a single server
• Eg, .edu, .com, .gov, etc.
• So these servers are replicated.

17



There is replication even within the 
root servers
• 13 root servers
•[a-m].root-servers.org
•E.g., d.root-servers.org

• But each root server has multiple copies of 
the database, which need to be kept in 
sync.

• Somewhere around 1500 replicas in total.



Case Study 4: Reliable Real-Time Chat
•Requirements: 
•Must support real-time text chat 
for 2,000 users exchanging 
messages. 
•Must have best-effort delivery in 
real-time
•Must guarantee that all 
messages acknowledged are 
preserved in the central 
database”



Possible solution: use separate processing 
units for each requirement.
• Allocate separate processing units for 
these requirements:
• “Real time” component optimizes for 
speed and availability (sacrificing fault-
tolerance)
• “Persistence” component optimizes for 
fault-tolerance, sacrificing speed and 
availability
• Event queue service receives events, 
dispatches to both processing units and 
is fault tolerant



Block diagram for a real-time chat 
service

Client

Real Time Chat Service

Client

Client

Client

Reliable 
message 

queue (e.g. 
RabbitMQ)

Fast, not-fault-
tolerant real-
time service 
(e.g. Redis)

Reliable 
database (e.g. 
PostgreSQL)



Learning Goals for this Lesson
• By the end of this lesson you should be 
able to:
• Briefly describe several typical examples of 

distributed systems
• Briefly describe how each of them deals with 

scalability, fault tolerance, etc.


