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Learning Goals for this Lesson
• By the end of this lesson you should be 
able to:
• Briefly describe several typical examples of 

distributed systems
• Briefly describe how each of them deals with 

scalability, fault tolerance, etc.



Case Study 1: the Network File 
System NFS
• NFS is a distributed file system: multiple clients can 
read/write the same files
• Created in 1984, still widely used
• In a UNIX (POSIX-compliant) operating system, files 
are stored in a tree from “/”
• Access a remote file by name like 

/username@remotehost/path/to/remote/file

• Or you could “mount” a remote filesystem to access it 
as if it were local.



NFS is a Monolithic Shared 
Filesystem
• All files are stored on a single server
• To list files in a directory, clients make request to 
server
• To read or write files, clients make request to server
• Clients might “lock” files to prevent concurrent 
updates
• Assuming that scale, throughput, fault tolerance 
requirements are relatively low, this is an acceptable 
architecture
• This architecture is the easiest to build fast and 
correctly



Case Study 2: GFS (Google File 
System, ~2010)
• Stated requirements: 
• “High sustained bandwidth is more 
important than low latency. Most of our 
target applications place a premium on 
processing data in bulk at a high rate, 
while few have stringent response time 
requirements for an individual read or 
write.”



GFS is a tiered filesystem with two tiers:
Metadata and File Chunks
• Example: GFS (Google File System, c 
2010)
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Where is file /foo/bar?
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Metadata tier stores where files 
are stored, in 128MB chunks

Chunk tier stores each 128MB chunk, no need for coordination between ChunkServers 
not storing same chunk



Case Study 3: Domain Name System 
(DNS)
• Nodes (hosts) on a network are identified by 
IP addresses
• E.g.: 142.251.41.4
• We humans prefer something easier to 
remember: calendar.google.com, 
facebook.com, 
www.khoury.northeastern.edu
• We need to keep a directory of domain 
names and their addresses
• We also need to make sure everybody gets 
directed to the correct host



Requirements for the DNS system
• Need to handle millions of DNS queries 
per second
• Not immediately obvious how to scale: 
how do we maintain replication, some 
measure of consistency?
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DNS distributed system requirements
• We need a scalable solution

• New hosts keep being added
• Number of users increases
• Need to maintain speed/responsiveness

• We need our service to be available and fault 
tolerant
• It is a crucial basic service
• A problematic node shouldn’t “crash the internet”
• Reads are more important that writes: far more queries 

to resolve records than to update them
• Global in scope

• Domain names mean the same thing everywhere
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Strawman solution A: monolithic 
architecture
• Route all requests to a server 
with a well-known address.
• All requests made to this 
server:
• Single point of failure
• Bottleneck for throughput and 

access time (billions of queries 
per day; access time in msecs)

• Bottleneck for administration 
(adding/changing records?)

• Ultimately, not scalable!
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Strawman solution B: Use a local file
• Keep local copy of mapping from all 
hosts to all IPs (e.g., /etc/hosts)
• Space would be reasonable: a few dozen 
Gbytes.
• BUT hosts change IPs regularly, so need 
to download file frequently
• Lot of constant internet bandwidth use
• Still not scalable!
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A tiered architecture yields a scalable 
solution
• Idea: break apart responsibility for each 
part of a domain name (zone) to a 
different group of servers
• Each zone is a continuous section of the 
name space, eg *.northeastern.edu
• Each zone has an associated set of name 
servers.



DNS partitions responsibility by “layers”. 
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Tree search 
in DNS

*.khoury.northeastern.edu.
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*.registrar.northeastern.edu.

*.law.northeastern.edu.

etc.
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Updating 
name servers
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*.edu

*.northeastern.edu

*.registrar.northeastern.edu.
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This is an example of a tiered 
architecture
• Each server need only needs to know 
about its immediate descendants in its 
zone.
• It only processes requests about a single 
zone.
• Both data and processing are limited to 
requests about this zone– any other 
requests are delegated to this server’s 
parent server.
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But some zones are too big and too 
busy to be handled by a single server
• Eg, .edu, .com, .gov, etc.
• So these servers are replicated.
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There is replication even within the 
root servers
• 13 root servers
•[a-m].root-servers.org
•E.g., d.root-servers.org

• But each root server has multiple copies of 
the database, which need to be kept in 
sync.

• Somewhere around 1500 replicas in total.



Case Study 4: Reliable Real-Time Chat
•Requirements: 
•Must support real-time text chat 
for 2,000 users exchanging 
messages. 
•Must have best-effort delivery in 
real-time
•Must guarantee that all 
messages acknowledged are 
preserved in the central 
database”



Possible solution: use separate processing 
units for each requirement.
• Allocate separate processing units for 
these requirements:
• “Real time” component optimizes for 
speed and availability (sacrificing fault-
tolerance)
• “Persistence” component optimizes for 
fault-tolerance, sacrificing speed and 
availability
• Event queue service receives events, 
dispatches to both processing units and 
is fault tolerant



Block diagram for a real-time chat 
service
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